top of page
acbeisiodianelvi

Spacetime Physics Introduction to Special Relativity PDF 177: A Creative Commons Licensed Book on Re



The history of special relativity consists of many theoretical results and empirical findings obtained by Albert A. Michelson, Hendrik Lorentz, Henri Poincaré and others. It culminated in the theory of special relativity proposed by Albert Einstein and subsequent work of Max Planck, Hermann Minkowski and others.


Although Isaac Newton based his physics on absolute time and space, he also adhered to the principle of relativity of Galileo Galilei restating it precisely for mechanical systems.[1] This can be stated as: as far as the laws of mechanics are concerned, all observers in inertial motion are equally privileged, and no preferred state of motion can be attributed to any particular inertial observer. However, as to electromagnetic theory and electrodynamics, during the 19th century the wave theory of light as a disturbance of a "light medium" or Luminiferous ether was widely accepted, the theory reaching its most developed form in the work of James Clerk Maxwell. According to Maxwell's theory, all optical and electrical phenomena propagate through that medium, which suggested that it should be possible to experimentally determine motion relative to the aether.




spacetime physics introduction to special relativity pdf 177



The failure of any known experiment to detect motion through the aether led Hendrik Lorentz, starting in 1892, to develop a theory of electrodynamics based on an immobile luminiferous aether (about whose material constitution Lorentz did not speculate), physical length contraction, and a "local time" in which Maxwell's equations retain their form in all inertial frames of reference. Working with Lorentz's aether theory, Henri Poincaré, having earlier proposed the "relativity principle" as a general law of nature (including electrodynamics and gravitation), used this principle in 1905 to correct Lorentz's preliminary transformation formulas, resulting in an exact set of equations that are now called the Lorentz transformations. A little later in the same year Albert Einstein published his original paper on special relativity in which, again based on the relativity principle, he independently derived and radically reinterpreted the Lorentz transformations by changing the fundamental definitions of space and time intervals, while abandoning the absolute simultaneity of Galilean kinematics, thus avoiding the need for any reference to a luminiferous aether in classical electrodynamics.[2] Subsequent work of Hermann Minkowski, in which he introduced a 4-dimensional geometric "spacetime" model for Einstein's version of special relativity, paved the way for Einstein's later development of his general theory of relativity and laid the foundations of relativistic field theories.


Some scientists and philosophers of science were critical of Newton's definitions of absolute space and time.[34][35][36] Ernst Mach (1883) argued that absolute time and space are essentially metaphysical concepts and thus scientifically meaningless, and suggested that only relative motion between material bodies is a useful concept in physics. Mach argued that even effects that according to Newton depend on accelerated motion with respect to absolute space, such as rotation, could be described purely with reference to material bodies, and that the inertial effects cited by Newton in support of absolute space might instead be related purely to acceleration with respect to the fixed stars. Carl Neumann (1870) introduced a "Body alpha", which represents some sort of rigid and fixed body for defining inertial motion. Based on the definition of Neumann, Heinrich Streintz (1883) argued that in a coordinate system where gyroscopes do not measure any signs of rotation inertial motion is related to a "Fundamental body" and a "Fundamental Coordinate System". Eventually, Ludwig Lange (1885) was the first to coin the expression inertial frame of reference and "inertial time scale" as operational replacements for absolute space and time; he defined "inertial frame" as "a reference frame in which a mass point thrown from the same point in three different (non-co-planar) directions follows rectilinear paths each time it is thrown". In 1902, Henri Poincaré published a collection of essays titled Science and Hypothesis, which included: detailed philosophical discussions on the relativity of space, time, and on the conventionality of distant simultaneity; the conjecture that a violation of the relativity principle can never be detected; the possible non-existence of the aether, together with some arguments supporting the aether; and many remarks on non-Euclidean vs. Euclidean geometry.


There is no doubt, that the special theory of relativity, if we regard its development in retrospect, was ripe for discovery in 1905. Lorentz had already recognized that the transformations named after him are essential for the analysis of Maxwell's equations, and Poincaré deepened this insight still further. Concerning myself, I knew only Lorentz's important work of 1895 [...] but not Lorentz's later work, nor the consecutive investigations by Poincaré. In this sense my work of 1905 was independent. [..] The new feature of it was the realization of the fact that the bearing of the Lorentz transformation transcended its connection with Maxwell's equations and was concerned with the nature of space and time in general. A further new result was that the "Lorentz invariance" is a general condition for any physical theory. This was for me of particular importance because I had already previously found that Maxwell's theory did not account for the micro-structure of radiation and could therefore have no general validity.


Planck (1906a) defined the relativistic momentum and gave the correct values for the longitudinal and transverse mass by correcting a slight mistake of the expression given by Einstein in 1905. Planck's expressions were in principle equivalent to those used by Lorentz in 1899.[80] Based on the work of Planck, the concept of relativistic mass was developed by Gilbert Newton Lewis and Richard C. Tolman (1908, 1909) by defining mass as the ratio of momentum to velocity. So the older definition of longitudinal and transverse mass, in which mass was defined as the ratio of force to acceleration, became superfluous. Finally, Tolman (1912) interpreted relativistic mass simply as the mass of the body.[81] However, many modern textbooks on relativity do not use the concept of relativistic mass anymore, and mass in special relativity is considered as an invariant quantity.


In 1907 Minkowski named four predecessors who contributed to the formulation of the relativity principle: Lorentz, Einstein, Poincaré and Planck. And in his famous lecture Space and Time (1908) he mentioned Voigt, Lorentz and Einstein. Minkowski himself considered Einstein's theory as a generalization of Lorentz's and credited Einstein for completely stating the relativity of time, but he criticized his predecessors for not fully developing the relativity of space. However, modern historians of science argue that Minkowski's claim for priority was unjustified, because Minkowski (like Wien or Abraham) adhered to the electromagnetic world picture and apparently did not fully understand the difference between Lorentz's electron theory and Einstein's kinematics.[88][89] In 1908, Einstein and Laub rejected the four-dimensional electrodynamics of Minkowski as overly complicated "learned superfluousness" and published a "more elementary", non-four-dimensional derivation of the basic equations for moving bodies. But it was Minkowski's geometric model that (a) showed that the special relativity is a complete and internally self-consistent theory, (b) added the Lorentz invariant proper time interval (which accounts for the actual readings shown by moving clocks), and (c) served as a basis for further development of relativity.[86] Eventually, Einstein (1912) recognized the importance of Minkowski's geometric spacetime model and used it as the basis for his work on the foundations of general relativity.


Today special relativity is seen as an application of linear algebra, but at the time special relativity was being developed the field of linear algebra was still in its infancy. There were no textbooks on linear algebra as modern vector space and transformation theory, and the matrix notation of Arthur Cayley (that unifies the subject) had not yet come into widespread use. Cayley's matrix calculus notation was used by Minkowski (1908) in formulating relativistic electrodynamics, even though it was later replaced by Sommerfeld using vector notation.[90] According to a recent source the Lorentz transformations are equivalent to hyperbolic rotations.[91] However Varicak (1910) had shown that the standard Lorentz transformation is a translation in hyperbolic space.[92]


Minkowski in his earlier works in 1907 and 1908 followed Poincaré in representing space and time together in complex form (x,y,z,ict) emphasizing the formal similarity with Euclidean space. He noted that spacetime is in a certain sense a four-dimensional non-Euclidean manifold.[97] Sommerfeld (1910) used Minkowski's complex representation to combine non-collinear velocities by spherical geometry and so derive Einstein's addition formula. Subsequent writers,[98] principally Varićak, dispensed with the imaginary time coordinate, and wrote in explicitly non-Euclidean (i.e. Lobachevskian) form reformulating relativity using the concept of rapidity previously introduced by Alfred Robb (1911); Edwin Bidwell Wilson and Gilbert N. Lewis (1912) introduced a vector notation for spacetime; Émile Borel (1913) showed how parallel transport in non-Euclidean space provides the kinematic basis of Thomas precession twelve years before its experimental discovery by Thomas; Felix Klein (1910) and Ludwik Silberstein (1914) employed such methods as well. One historian argues that the non-Euclidean style had little to show "in the way of creative power of discovery", but it offered notational advantages in some cases, particularly in the law of velocity addition.[99] (So in the years before World War I, the acceptance of the non-Euclidean style was approximately equal to that of the initial spacetime formalism, and it continued to be employed in relativity textbooks of the 20th century.[99]


2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


bottom of page